只有32位模澳门永利5454网址式有强制要求

当前位置:澳门永利5454a > 澳门永利5454网址 > 只有32位模澳门永利5454网址式有强制要求
作者: 澳门永利5454a|来源: http://www.aaddhimagan.com|栏目:澳门永利5454网址

文章关键词:澳门永利5454a,浮点标准

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  浮点数是指一个数的小数点的位置不是固定的,而可以浮动。浮点数标准,也称IEEE二进制浮点数算术标准(IEEE 754),是20世纪80年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用。这个标准定义了表示浮点数的格式(包括负零-0)与反常值(denormal number)),一些特殊数值(无穷(Inf)与非数值(NaN)),以及这些数值的“浮点数运算符”;它也指明了四种数值舍入规则和五种例外状况(包括例外发生的时机与处理方式)。

  在计算机系统的发展过程中,曾经提出过多种方法表示实数,但是到为止使用最广泛的是浮点表示法。相对于定点数而言,浮点数利用指数使小数点的位置可以根据需要而上下浮动,从而可以灵活地表达更大范围的实数。 浮点数表示法利用科学计数法来表达实数

  在IEEE-754标准出现之前,业界并没有一个统一的浮点数标准,相反,很多计算机制造商都在设计自己的浮点数规则以及运算细节。澳门永利5454网址

  为了便于软件的移植,浮点数的表示格式应该有一个统一的标准。1985年,IEEE(Institute of Electrical and Electronics Engineers,美国电气和电子工程师协会)提出了IEEE-754标准,并以此作为浮点数表示格式的统一标准。几乎所有的计算机都支持该标准,从而大大改善了科学应用程序的可移植性

  IEEE标准从逻辑上采用一个三元组{S, E, M}来表示一个数N,它规定基数为2,符号位S用0和1分别表示正和负,尾数M用原码表示,阶码E用移码表示。根据浮点数的规格化方法,尾数域的最高有效位总是1,由此,该标准约定这一位不予存储,而是认为隐藏在小数点的左边,因此,尾数域所表示的值是1.M(实际存储的是M),这样可使尾数的表示范围比实际存储多一位。为了表示指数的正负,阶码E通常采用移码方式来表示,将数据的指数e 加上一个固定的偏移量后作为该数的阶码,这样做既可避免出现正负指数,又可保持数据的原有大小顺序,便于进行比较操作。

  IEEE 754规定了四种表示浮点数值的方式:单精确度(32位)、双精确度(64位)、延伸单精确度(43比特以上,很少使用)与延伸双精确度(79比特以上,通常以80位实现)。只有32位模式有强制要求,其他都是选择性的。大部分编程语言都有提供IEEE浮点数格式与算术,但有些将其列为非必需的。例如,IEEE 754问世之前就有的C语言,有包括IEEE算术,但不算作强制要求(C语言的float通常是指IEEE单精确度,而double是指双精确度)。

  该标准的全称为IEEE二进制浮点数算术标准(ANSI/IEEE Std 754-1985),又称IEC 60559:1989,微处理器系统的二进制浮点数算术(本来的编号是IEC 559:1989)。后来还有“与基数无关的浮点数”的“IEEE 854-1987标准”,有规定基数为2跟10的状况。最新标准是“ISO/IEC/IEEE FDIS 60559:2011”。

  也就是浮点数的实际值,等于符号位(sign bit)乘以指数偏移值(exponent bias)再乘以分数值(fraction)。

  把W个比特(bit)的数据,从内存地址低端到高端,以0到W−1编码。通常将内存地址低端的比特写在最右边,称作最低有效位(Least Significant Bit,LSB),代表最小的比特,改变时对整体数值影响最小的比特。声明这一点的必要性在于X86体系架构是小端序的数据存储。对于十进制整数N,必要时表示为N10以与二进制的数的

  对于一个数,其二进制科学计数法表示下的指数的值,下文称之为指数的实际值;而根据IEEE 754标准对指数部分的编码的值,称之为浮点数表示法指数域的编码值。

  二进制浮点数是以符号数值表示法的格式存储——最高有效位被指定为符号位(sign bit);“指数部分”,即次高有效的e个比特,存储指数部分;最后剩下的f个低有效位的比特,存储“有效数”(significand)的小数部分(在非规约形式下整数部分默认为0,其他情况下一律默认为1)。

  指数偏移值(exponent bias),是指浮点数表示法中的指数域的编码值为指数的实际值加上某个固定的值,IEEE 754标准规定该固定值为

  。此为有号数的表示方式,单精度浮点数的指数部分实际取值是从-127到128。例如指数实际值为

  采用指数的实际值加上固定的偏移值的办法表示浮点数的指数,好处是可以用长度为 {\displaystyle e} 个比特的无符号整数来表示所有的指数取值,这使得两个浮点数的指数大小的比较更为容易,实际上可以按照字典序比较两个浮点表示的大小。这种移码表示的指数部分,中文称作阶码。

  之间,且在科学表示法的表示方式下,分数 (fraction) 部分最高有效位(即整数字)是

  ,那么这个浮点数将被称为规约形式的浮点数。“规约”是指用确定的浮点形式去表示一个值。由于这种表示下的尾数有一位隐含的二进制有效数字,为了与二进制科学计数法的尾数(mantissa)相区别,IEEE754称之为有效数(significant)。举例来说,双精度 (64-bit) 的规约形式浮点数在指数偏移值的值域为

  如果浮点数的指数部分的编码值是0,分数部分非零,那么这个浮点数将被称为非规约形式的浮点数。一般是某个数字相当接近零时才会使用非规约型式来表示。 IEEE 754标准规定:非规约形式的浮点数的指数偏移值比规约形式的浮点数的指数偏移值小1。例如,最小的规约形式的单精度浮点数的指数部分编码值为1,指数的实际值为-126;而非规约的单精度浮点数的指数域编码值为0,对应的指数实际值也是-126而不是-127。实际上非规约形式的浮点数仍然是有效可以使用的,只是它们的绝对值已经小于所有的规约浮点数的绝对值;即所有的非规约浮点数比规约浮点数更接近0。规约浮点数的尾数大于等于1且小于2,而非规约浮点数的尾数小于1且大于0

  除了规约浮点数,IEEE754-1985标准采用非规约浮点数,用来解决填补绝对值意义下最小规格数与零的距离。(举例说,正数下,最大的非规格数等于最小的规格数。而一个浮点数编码中,如果exponent=0,且尾数部分不为零,那么就按照非规约浮点数来解析)非规约浮点数源于70年代末IEEE浮点数标准化专业技术委员会酝酿浮点数二进制标准时,Intel公司对渐进式下溢出(gradual underflow)的力荐。当时十分流行的DEC VAX机的浮点数表示采用了突然式下溢出(abrupt underflow)。如果没有渐进式下溢出,那么0与绝对值最小的浮点数之间的距离(gap)将大于相邻的小浮点数之间的距离。例如单精度浮点数的绝对值最小的规约浮点数是

  。如果不采用渐进式下溢出,那么绝对值最小的规约浮点数与0的距离是相邻的小浮点数之间距离的

  倍!可以说是非常突然的下溢出到0。这种情况的一种糟糕后果是:两个不等的小浮点数X与Y相减,结果将是0.训练有素的数值分析人员可能会适应这种限制情况,但对于普通的程序员就很容易陷入错误了。采用了渐进式下溢出后将不会出现这种情况。例如对于单精度浮点数,指数部分实际最小值是(-126),对应的尾数部分从

  浮点数基本上可以按照符号位、指数域、尾数域的顺序作字典比较。显然,所有正数大于负数;正负号相同时,指数的二进制表示法更大的其浮点数值更大。

  任何有效数上的运算结果,通常都存放在较长的寄存器中,当结果被放回浮点格式时,必须将多出来的比特丢弃。 有多种方法可以用来运行舍入作业,实际上IEEE标准列出4种不同的方法:

  舍入到最接近:舍入到最接近,在一样接近的情况下偶数优先(Ties To Even,这是默认的舍入方式):会将结果舍入为最接近且可以表示的值,但是当存在两个数一样接近的时候,则取其中的偶数(在二进制中式以0结尾的)。

  加减乘除(Add、subtract、multiply、divide)。在加减运算中负零与零相等:

  近似到最近的整数 {\displaystyle round(x)}。如果恰好在两个相邻整数之间,则近似到偶数。

  比较运算. -Inf 负的规约浮点数数负的非规约浮点数 -0.0 = 0.0 正的非规约浮点数正的规约浮点数 Inf;

  特殊比较: -Inf = -Inf, Inf = Inf, NaN与任何浮点数(包括自身)的比较结果都为假,即 (NaN ≠ x) = false.

  copysign(x, y): copysign(x, y)返回的值由x的不带符号的部分和y的符号组成。因此abs(x)等于copysign(x, 1.0)。copysign可以对NaN正确操作,这是少有的几个可以对NaN像普通算术一样操作有效的函数之一。C99新增了copysign函数。

  −x:从涵义上指将x的符号反转。当x是±0或者NaN时,其涵义可能不同于0-x.

  scalb(y, N):计算y×2N(N是整数),无需再计算2N。C99中对应的函数名是scalbn.

  logb(x):计算x = 1.a×2n(x ≠ 0, a ∈[0, 1))中的n. C99新增了logb和ilogb函数。

  nextafter(x,y):沿y方向找最邻近x的可表达浮点数。比如nextafter(0, 1)得到的是最小可表达的正数。C99新增了nextafter函数。

  finite(x):判断x是否有限,即−Inf x Inf. C99新增了isfinite函数。

  isnan(x):判断x是否是一个NaN,这等价于x ≠ x. C99新增了isnan函数。

  x y:仅当x y或者x y时才为True,其涵义是NOT(x = y)。注意这不同于x ≠ y。

  unordered(x, y):当x与y无法比较大小时为True,比如说x或者y是一个NaN. C99中对应的函数名是isunordered.

  class(x):区分x的浮点数类属:信号NaN、静默NaN、-Inf、负的规约浮点数,负的非规约浮点数,-0.0,0.0,正的非规约浮点数,正的规约浮点数,Inf。

  朱亚超.基于IEEE 754的浮点数存储格式分析研究[J].计算机与信息技术,2006(09):50-52.

  IEEE. IEEE 754: An interview with William Kahan[J]. Computer, 1998, 31(3):114-115.

  IEEE. IEEE-754, Standard for Floating-Point Arithmetic[J]. 2008:1-58.

网友评论

我的2016年度评论盘点
还没有评论,快来抢沙发吧!